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ABSTRACT

Two methods of digital spectral analysis of unevenly sampled data are developed and illustrated here. One
method uses a linear function of time (or space), the other uses circular functions. The circular method turns
out to be essentially equivalent to a least-squares sine-wave analysis. The linear, anharmonic method uses only
the field of real numbers and elementary algebraic operations, and hence it can be made computationally very
fast and accurate. Both methods are very general, properly handling all kinds of time series ranging from
simple series consisting only of the times of events to complicated series consisting of pulses with long duty
cycles. The two methods are here applied to the analysis of annual mean relative sunspot numbers.

Subject headings: numerical methods — Sun: sunspots

1. INTRODUCTION

Many experimental problems in astronomy and in other
disciplines require spectral analysis of serial data sequenced in
time or space. The methods of analysis previously used have
essentially fallen into two broad categories: harmonic analysis
(e.g., the Schuster periodogram, fast Fourier transform, least-
squares sine-wave analysis, Blackman-Tukey power spectrum
analysis, and maximum entropy spectral analysis) or folding
methods. These techniques have been described well in numer-
ous publications. Presented here are two new methods of
analysis, one of which turns out to be essentially equivalent to
least-squares sine-wave analysis while the other belongs in a
category of its own. Both methods, however, are ultimately
rooted in discussions of early physical problems and of early
mathematical techniques devised for the solution of these
problems. What is perhaps most important in this paper is the
extension of these early techniques from the treatment of time
series consisting only of a sequence of dates to the treatment of
time series with amplitude information.

2. TIME SERIES WITHOUT AMPLITUDE INFORMATION:
PREVIOUS WORK

To analyze his observations of simple pendulum motion,
Galileo broke ground by measuring independently the amount
of time required for one oscillation and the number of oscil-
lations occurring in a fixed time (Fermi & Bernardini 1961). If
N is the number of observed oscillations, his statistical model
for this process can be represented by a periodic function that
is linear in both the model parameters and the controllable
variables,

t=1+nmll +e, )

where 7 is the initial phase, IT the period of oscillation, n; an
integer or zero, and e; a small error term. In modern applica-
tions of equation (1), observed event times t; i=1, 2, ..., N)
are fitted to the model by using tabular, graphical, or analytical
methods. If the n; are known with respect to some arbitrary
starting value and the ¢; are normaily distributed with mean 0
and variance ¢, minimum-variance estimates of the param-
eters T and I1 can be derived by the method of least squares.
Note that, if some event times are either clustered or missing, n;
will not in general be equal to i.
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Often, however, the n; are not observed quantities. Broad-
bent (1955, 1956) considered the case where 7 is either known
or assumed a priori; defining d; (present notation) as the dis-
tance of t; from the nearest predicted time %, = t, + n; P, he
discussed the statistical properties of the lumped variance of
the observations,

$= (zﬁ‘ﬁ df)/N , di=t,— 1, )

as a function of the trial value P for the “quantum” II, with
to = 7. (An unbiased estimate of variance for N — 1 degrees of
freedom, s>N/(N — 1), could alternatively have been adopted.)

Two rediscoveries and generalizations of Broadbent’s
method have allowed for the situation where 7 is unknown. In
these approaches, a best-fit value of 7 is obtained for each P by
adopting a set of trial initial phases ¢, {mod P)(j = 1,2, ..., M),
then calculating the d;, and finally locating the smallest
member of the corresponding set of computed s;=
(Y d7/N)'/? (Stothers 1979) or of computed &; =Y, d;;|/N
(Raup & Sepkoski 1984). The latter approach, using 6;, simply
treats (8, s7) as a sufficient statistic, but my numerical experi-
ments have shown that §; can attain exactly zero for more than
one initial phase for some trial periods, even in the case of a
perfectly periodic time series. Consequently, only the use of s;
yields a fully consistent, maximum-likelihood solution.

An entirely different approach is possible, as Schuster (1897)
showed in his study of the statistical distribution of times of
earthquakes and von Mises (1918) independently demon-
strated in the case of the distribution of experimentally mea-
sured atomic weights. The measurements ¢; are first mapped
onto a circle by converting them to angles,

0; = 2nt;/P (mod 2n)
(see also Kendall 1974). With the definitions

A=<i cose,.>/1v, B=<i§1 sin@,)/N, @)

i=1

an application of circular statistics leads to a mean vector
magnitude R (a normalized measure of goodness of fit) and a
phase 7 that minimize the dispersion at trial period P:

R=(4*+ BH)Y2, 1=(P/2n)tan"! (B/A). )

The full range of R is 0 to 1. As in related harmonic-analysis
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techniques, this approach requires calculating trigonometric
functions, which is slow. More seriously, erroneous answers
may be obtained by this method if the distribution of the s; is
asymmetric about its true minimum or has more than one
minimum (as happens at some trial periods even in the case of
perfectly periodic time series, although not at harmonics of the
fundamental period).

3. INTERPRETATION OF THE SPECTRA

Calibration of the more accurate, and potentially faster,
linear method (Stothers 1979) can be done by analyzing a finite
Dirac comb, which is a periodic series of unit impulse func-
tions. For simplicity, the N — 1 spacings between the N equi-
spaced d-function pulses are set equal to unity, and frequency
f=1/P is used instead of period for the analysis. The non-
dimensional spectrum s(f)f appears as a semi-infinite, horizon-
tal continuum of height

se(f)f = [(N* — D/A2N*)]2 (6

broken by a sequence of “absorption dips” that descend to
zero (§ 4). Below a critical frequency f* = 1/N, s(f)f mono-
tonically decreases in proportion to f. To display the spectral
transform of the time series as a sequence of “emission peaks”
above a zero-valued continuum, a residuals index S(f)=
s.(f)f — s(f)fis adopted, although an alternative choice might
be a variance index, V(f) = s.(f)*f? — s(f)*f%. Normalized
indices would be S, (f)=S(f)s.f)f and V,(f)=
V£ YsdFY2.

The spectral peaks at frequencies f > f* are found by ana-
lytical or empirical means to obey the following “quantum
rules”:

1. Primary spectral peaks have the highest maxima, S(f) =
s.(f)f, and occur centered at the harmonic frequencies f = 0, 1,
2,...,for N > 2. See§ 4.

2. Secondary spectral peaks appear with maxima occurring
at the subharmonic frequencies f = 1/2,3/2,5/2, ..., for N = 3.
For small, even N, splitting of the peaks in two causes a
shallow valley to appear at the subharmonic frequencies them-
selves. At large N, the maxima have S(f) =~ 0.134 s.(f)f. See
§ 4.

3. In analogous fashion, higher order series of spectral peaks
arise successively for N >4, but have extremely small S(f)
values at large N.

4. Competing with the development and positioning of the
secondary and higher order series of spectral peaks is the
occurrence of “line splitting” (subdivision) of the primary
peaks for N > 3. The realizable number of subdivisions,
however, is restricted by the total number of “allowed ” spec-
tral peaks between successive primary peaks, which number is
N — 2 (only approximate for large N), and by the fact that
subdivision invariably occurs in a symmetric pair about the
primary peak. The members of the innermost pair always lie,
with respect to the primary peak, at Af = +3/(2N,), where
Ny, =N (odd N) or Ny =N — % (even N). At large N, the
innermost pair shows S(f) =~ 0.134s.(f)f, i.e., the same as for
the subharmonic (secondary) spectral peaks. More distant
satellite peaks have their maxima successively separated from
their inner neighbors by Af~ +2/(2N,), and exhibit ampli-
tudes that decay with increasing distance from the primary
peak. The phenomena of nonzero line width and of line split-
ting resembile slit diffraction patterns and are due to the finite
length of the record. The diffraction analogy has been quanti-
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tatively worked out by Blackman & Tukey (1958) in the case of
the Fourier transform of a finite Dirac comb.

5. Spectral peaks belonging to the secondary and higher
order series of peaks also split, but obey quantitatively differ-
ent separation laws for the components. The S(f) values of the
split components are very small at large N.

For a long series of observed event times that are not obvi-
ously periodic, the distribution of major and minor peaks in
the spectrum can occasionally help to identify the spectral
peak which refers most nearly to a fundamental period. Owing
to the relative insensitivity of s.(f)f to N, the statistic S(f)
remains a well-behaved spectral index even for highly aperio-
dic series. However, S(f) can be slightly negative at some trial
periods for an aperiodic series.

4. EVALUATION AND MEANING OF THE SPECTRAL
CONTINUUM s.(f)f

Equation (6) represents the continuum of the spectrum s(f)f.
The mathematical proof of equation (6) follows by the method
of induction, starting with N = 2. It is convenient to evaluate
the spectral continuum at f= I/N, so that [s(f)f]*=
N3 min; {},d}; j=1,2,..., M}. Simple inspection of the
periodic series of times is sufficient to indicate for each low
value of N the most favorable location for 7, such that ), d3
will be smallest. Formation of the sums for successively higher
values of N leads to the general result

N/2

2N73 Z (i—%?, Neven, (7a)
[s.()f] = 12
N3 Y 2, Nodd. (7b)

i=1

Application of elementary integer arithmetic then yields equa-
tion (6). Note that 1/16 < [5,(f)f1%> < 1/12for2 < N < co.

In a spectrum plotted for the residuals index, S(f) =
s(f)f — s(f)f, the quantity s.(f)f refers to the heights of all the
spectral peaks at the harmonic (primary) frequencies. It is easy
to show that, at subharmonic (secondary) frequencies, the
heights of all the peaks approach 1/(12)*/2 — 1/(16)/% =1/
(12)'? x 0.134... as N - oo, and therefore, for large N,
S(f) = 0.134 s.(f)f.

The quantity s.(f)f has considerably wider significance in
that it also represents the expectation value of s(f)f for the
uniform probability distribution of an infinite number of
random times. Previously, this distribution (alternatively called
the rectangular distribution) was studied analytically and
numerically by Broadbent (1955, 1956), but his analytical
result, which is equivalent to E{s(f)f} = s.(/)f = 1/(12)*2,
refers strictly to N = co. My Monte Carlo simulations, using a
sampling interval running from t =0 to t = N + 1 such that
the expected values of the N ordered random times are 1, 2,....,
N, yield an expectation value of s(f)f equal to E{s(f)f} =~
s(f)f — QN2 (f) flor f> f*.

This result is obviously relevant to hypothesis testing at a
priori frequencies. For the null hypothesis of a Poisson process
of completely random times, the expectation value of the
residuals index is E{S(f)} ~ 2N ~Y?)s.(f)ffor /> f*.

5. TIME SERIES WITH AMPLITUDE INFORMATION

Time series that contain amplitude information w(t;) may be
operationally regarded either as a sequence of unequally
weighted times or as a sequence in which some of the times
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coincide. Either of these interpretations permits an extension of
the preceding methods, because they validate adopting the sta-
tistic S(f) = s(f)f — s(f)fwith

N

s(f)2=minj{z w,-d,-zj/i w; ; j=1,2,...,M} 8)

i=1

or the analogous circular statistic R(f) = (42 + B*)'/? with

N N N N
A=Zwicosei/ w;, B=Zw,~sin0i/z w,. (9)
= = i=1

i i i=1

In the latter case, R(f) apart from a different normalization
constant is equivalent to the spectral amplitude in least-
squares sine-wave analysis in its lowest order approximation
{e.g., Barning 1963), which itself is essentially equivalent to the
spectral amplitude in a slightly modified version of ordinary
periodogram analysis (e.g., Lomb 1976; Scargle 1982). The
original periodogram method was devised only for evenly
sampled data (Schuster 1898). The present derivation, however,
is new and illustrates why the use of R(f) is as appropriate for
a series of very narrow pulses as for a series of sinusoidal
pulses.

Note that every observation enters the analysis with its exact
time and with its full weight. No interpolation is necessary to
fit a mesh of equally spaced times. Furthermore, the absence of
a need to bin the observations means that any associated losses
of resolution and of information are not incurred.

To calibrate the new method of weighted linear spectral
analysis, a finite series of periodic pulses with a long duty cycle
will be used, specifically, a pure cosine curve, w = 1 + cos (2xt).
Over the practical frequency range f > f*, the spectral trans-
form S(f) shows only one supremum: a high, wide-band peak
centered at the fundamental frequency f= 1, which is sur-
rounded by side lobes of diminishing amplitude, representing
the spectral leakage. As the number of cosine cycles increases,
the side lobe density also increases and the main spectral peak
becomes narrower. The frequencies of the maxima of the inner-
most side lobes are very close to those arising from a finite
Dirac comb if N is equal to the number of cosine cycles plus
one-half. The case of eight equispaced pulses is illustrated in
Figure 1 for both the pure cosine curve and the finite Dirac
comb.

6. COMPUTATION TIME

The computation time on a scalar processing machine scales
as NN N, for the linear method and as NN for the circular
method. Here N is the number of observations, N, is the
number of trial frequencies, and N, (called M above) is the
number of trial phases per trial frequency. In both methods, N,
N, and N, are mutually independent.

On a scalar machine, the need to circulate through N obser-
vations for every trial phase makes the linear method compu-
tationally slower than the circular method in most problems
for which a reasonable number of trial phases (and trial
frequencies) is required. For example, using a program written
in FORTRAN for the Goddard Institute for Space Studies’
Amdahl 5870 sequential processor with the MVS/XA oper-
ating system, linear spectral analysis of 26 observations with
6000 trial frequencies and with 20 trial phases per trial fre-
quency takes ~4 times longer than does the same computation
using circular spectral analysis.

On the other hand, a parallel or vector processor can calcu-
late simultaneously all the needed trial phases. With program
vectorization, the linear method clearly becomes faster than
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FiG. 1.—Spectra S(f) for (a) a finite Dirac comb consisting of eight pulses
and (b) a pure cosine curve containing eight maxima (seven and a half cycles).
Each cycle in the cosine curve has been sampled at 64 equal time intervals. A
higher sampling rate leads to little change. Periods of the major peak maxima
are listed in units of the fundamental period, II. Results based on R(f) are
rather similar to those for S(f).

the circular method. Although clever ways to speed up the
circular method (which is essentially equivalent to the modified
periodogram method) are now available (e.g., Kurtz 1985;
Press & Rybicki 1989), the need to calculate or look up sine
and cosine functions may ultimately keep this method slower
than the vectorized linear method, which seems to be close to
the ultimate in digital simplicity. The new algorithm could
even be easily programmed in machine language.

7. APPLICATIONS

Some aspects of the power of the linear method can be
demonstrated with a classical time series: the sequence of
annual mean relative sunspot numbers since the year 1700
(Waldmeier 1961; US Department of Commerce 1987). Trans-
form spectra are displayed in Figure 2 for three comparative
cases: {a) linear spectral analysis of the 26 dates of sunspot
maximum between 1700 and 1986; (b) weighted linear spectral
analysis of the whole sunspot curve, 1700-1986; and (c)
weighted circular spectral analysis of the same curve.

The results for the periods of the spectral peaks compare
very favorably in this complicated test case, in spite of the
enormous differences inherent in the three spectral methods
used. The main spectral peak occurs at a period of ~ 11 yr, and
some of the minor peaks exhibit amplitudes and periods that
indicate that they are not side lobes of the main peak. Berger,
Mélice, & van der Mersch (1990) recently used on the same
time series six different spectral methods: classical harmonic
analysis, Blackman-Tukey power spectrum analysis, periodic
regression, maximum entropy analysis, minimum cross-
entropy analysis, and Thomson multitaper analysis. Not sur-
prisingly, at the higher harmonics of the record length where
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F16. 2—Transform spectra of annual mean relative sunspot numbers,
1700-1986, based on: (a) linear spectral analysis of the 26 dates of sunspot
maximum, (b) weighted linear spectral analysis of the whole sunspot curve, and
(c) weighted circular spectral analysis of the same curve. The raw data and the
computed spectra have not been detrended or filtered. Periods of the major
peak maxima are listed in units of years.

the frequencies are very closely spaced, the results based on
classical harmonic analysis are virtually identical to the present
results based on circular spectral analysis. An equivalent
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degree of resolution seems to be achieved in the cases of
periodic regression and Thomson multitaper analysis.
Although it is not the purpose of this paper to interpret these
numerous spectral peaks, it cannot escape notice that many of
the minor peaks must be relatively independent of the actual
details of the sunspot curve, since they occur even when only
the dates of sunspot maximum are analyzed (Fig. 2a).

8. CONCLUSION

Since the linear and circular methods of analysis are not
restricted to equally spaced dates, they are readily able to
handle gaps in data acquisition. As long as enough cycles are
available and nonstationarities are not dominant, the central
limit theorem ensures that it is possible to locate approx-
imately the correct mean period; consequently, the distribu-
tions of the errors e; need not be either homoscedastic or
normal (which in general they cannot be owing to the physical
constraint |d| < § max {t;,, — t;}). The potentially great com-
puting speed of the linear method in a parallel or vector pro-
cessor may commend it over analog methods for some kinds of
real-time data processing and also for performing nonpara-
metric tests of significance that employ Monte Carlo simula-
tions. The crucial difference between the two basic types of
spectral methods is that linear analysis fits a single, linear,
discrete function for time, whereas circular and other forms of
harmonic spectral analysis fit, in effect, a multiple, sinusoidal,
continuous function for amplitude.

This paper is dedicated to the memory of Sergej A. Lebedeff,
who helped to spark in me an interest in time series analysis.
An anonymous referee made some useful suggestions for
greater clarity in various parts of the paper. The listing of a
FoRrTRAN program to calculate S(f) and R(f) is available upon
written request to the author (no requests for disk, tape, or
electronic transfer, however, will be honored). The program
code is not vectorized for use in parallel or vector processors.
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